(x^2+2k+1)*(2x^2+4k+1)=2k^4-k^2+2k^3+1

Simple and best practice solution for (x^2+2k+1)*(2x^2+4k+1)=2k^4-k^2+2k^3+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+2k+1)*(2x^2+4k+1)=2k^4-k^2+2k^3+1 equation:


Simplifying
(x2 + 2k + 1)(2x2 + 4k + 1) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
(1 + 2k + x2)(2x2 + 4k + 1) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
(1 + 2k + x2)(1 + 4k + 2x2) = 2k4 + -1k2 + 2k3 + 1

Multiply (1 + 2k + x2) * (1 + 4k + 2x2)
(1(1 + 4k + 2x2) + 2k * (1 + 4k + 2x2) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1
((1 * 1 + 4k * 1 + 2x2 * 1) + 2k * (1 + 4k + 2x2) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1
((1 + 4k + 2x2) + 2k * (1 + 4k + 2x2) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1
(1 + 4k + 2x2 + (1 * 2k + 4k * 2k + 2x2 * 2k) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
(1 + 4k + 2x2 + (2k + 4kx2 + 8k2) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1
(1 + 4k + 2x2 + (2k + 4kx2 + 8k2) + x2(1 + 4k + 2x2)) = 2k4 + -1k2 + 2k3 + 1
(1 + 4k + 2x2 + 2k + 4kx2 + 8k2 + (1 * x2 + 4k * x2 + 2x2 * x2)) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
(1 + 4k + 2x2 + 2k + 4kx2 + 8k2 + (4kx2 + 1x2 + 2x4)) = 2k4 + -1k2 + 2k3 + 1
(1 + 4k + 2x2 + 2k + 4kx2 + 8k2 + (4kx2 + 1x2 + 2x4)) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
(1 + 4k + 2k + 4kx2 + 4kx2 + 8k2 + 2x2 + 1x2 + 2x4) = 2k4 + -1k2 + 2k3 + 1

Combine like terms: 4k + 2k = 6k
(1 + 6k + 4kx2 + 4kx2 + 8k2 + 2x2 + 1x2 + 2x4) = 2k4 + -1k2 + 2k3 + 1

Combine like terms: 4kx2 + 4kx2 = 8kx2
(1 + 6k + 8kx2 + 8k2 + 2x2 + 1x2 + 2x4) = 2k4 + -1k2 + 2k3 + 1

Combine like terms: 2x2 + 1x2 = 3x2
(1 + 6k + 8kx2 + 8k2 + 3x2 + 2x4) = 2k4 + -1k2 + 2k3 + 1

Reorder the terms:
1 + 6k + 8kx2 + 8k2 + 3x2 + 2x4 = 1 + -1k2 + 2k3 + 2k4

Add '-1' to each side of the equation.
1 + 6k + 8kx2 + 8k2 + 3x2 + -1 + 2x4 = 1 + -1k2 + 2k3 + -1 + 2k4

Reorder the terms:
1 + -1 + 6k + 8kx2 + 8k2 + 3x2 + 2x4 = 1 + -1k2 + 2k3 + -1 + 2k4

Combine like terms: 1 + -1 = 0
0 + 6k + 8kx2 + 8k2 + 3x2 + 2x4 = 1 + -1k2 + 2k3 + -1 + 2k4
6k + 8kx2 + 8k2 + 3x2 + 2x4 = 1 + -1k2 + 2k3 + -1 + 2k4

Reorder the terms:
6k + 8kx2 + 8k2 + 3x2 + 2x4 = 1 + -1 + -1k2 + 2k3 + 2k4

Combine like terms: 1 + -1 = 0
6k + 8kx2 + 8k2 + 3x2 + 2x4 = 0 + -1k2 + 2k3 + 2k4
6k + 8kx2 + 8k2 + 3x2 + 2x4 = -1k2 + 2k3 + 2k4

Solving
6k + 8kx2 + 8k2 + 3x2 + 2x4 = -1k2 + 2k3 + 2k4

Solving for variable 'k'.

Reorder the terms:
6k + 8kx2 + 8k2 + k2 + -2k3 + -2k4 + 3x2 + 2x4 = -1k2 + 2k3 + 2k4 + k2 + -2k3 + -2k4

Combine like terms: 8k2 + k2 = 9k2
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = -1k2 + 2k3 + 2k4 + k2 + -2k3 + -2k4

Reorder the terms:
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = -1k2 + k2 + 2k3 + -2k3 + 2k4 + -2k4

Combine like terms: -1k2 + k2 = 0
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = 0 + 2k3 + -2k3 + 2k4 + -2k4
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = 2k3 + -2k3 + 2k4 + -2k4

Combine like terms: 2k3 + -2k3 = 0
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = 0 + 2k4 + -2k4
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = 2k4 + -2k4

Combine like terms: 2k4 + -2k4 = 0
6k + 8kx2 + 9k2 + -2k3 + -2k4 + 3x2 + 2x4 = 0

The solution to this equation could not be determined.

See similar equations:

| 1-3x/4=2^3-2*x | | -5c+2.3=-18.8 | | 12cos(x)-4sin(x)=7 | | -3y+2=-2+6y | | -6w=-65 | | 3y+2=-2+6y | | 6+35x=20x+18 | | 4y-7=2-y | | z/9-9=2 | | 0=2(-x+100)(x+60) | | 2y-5=36 | | y=2(-x+100)(x+60) | | 3(x+2)+5=2(x+15) | | 34-4x=6-8x | | 8/3*9/7 | | 8/3*3/7 | | x^2-2x/5-4=0 | | 8x+32(1-x)=13.35 | | -5x+6x+1=-6x+6x | | 4n-18=n | | -5x+1=-6x | | 4x-9x+1=-6x | | 2(-2c+7)+10=4c | | y=.0015x^4-11.665x^3+34502x^2-5E+7x+2E+10 | | -3-1x=-2 | | 1-p^3=0.064 | | 1.8-4.3(-2)=6.1 | | 1.8-4.3x=6.1 | | 4.7(1)-3.5=5.9 | | 11/9*2/3 | | x^3+6*y^3=31 | | 4.7(0)-3.5=5.9 |

Equations solver categories